首页/ 题库 / [单选题]已知n维向量α1,α2,…,αs线性无关的答案

已知n维向量α1,α2,…,αs线性无关,那么可能线性相关的β1,β2,…,βs是

单选题
2022-01-09 23:41
A、把α<sub>i</sub>(i=1,2,…,s)中第1个分量与第n个分量互换为β<sub>i</sub>.
B、把α<sub>i</sub>(i=1,2,…,s)中第1个分量改为相反数是β<sub>i</sub>.
C、把α<sub>i</sub>(i=1,2,…,s)中第1个分量改为0得到β<sub>i</sub>.
D、把α<sub>i</sub>(i=1,2,…,s)的第1个与第2个分量之间添加0为β<sub>i</sub>.
查看答案

正确答案
C

试题解析

相关题目
6.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )
2.设β可由向量α1=(1,0,0),α2=(0,0,1)线性表示,则下列向量中β只能是( )
若α1:α2:α3:β1:β2都是四维列向量,且四阶行列式|α1:α2:α3:β1|=m,|α1:α2;α3:β2|=n,则行列式|α1:α2:α3:β1+β2|等于()
若 n维向量 α 1 ,α 2 , ⋯ , α n 线性相关, β为任一 n维向量,则 ( )。
设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( ) [ 2.5 分 ]
设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。
设α,β,γ,δ是维向量,已知α,β线性无关,γ可以由α,β线性表示,δ不能由α,β线性表示,则以下选项正确的是()。
已知向量组α,β,γ线性无关,则k≠1是向量组α+kβ,β+kγ,α-γ线性无关的()。
若向量组α、β、γ线性无关,α、β,δ线性相关,则(  ).
已知n维向量的向量组α1,α2,…,αs线性无关,则向量组α"1,α"2,…,α"s可能线性相关的是__.
设α1,α2,…,αs,β是线性相关的n维向量组,则______。
设α1,α2,…,αs和β1,β2,…,βt为两个n维向量组,且秩(α1,α2,…,αs)=秩(β1,β2,…,βt)=r,则()。
设向量组α1,α2,…,αs线性无关,而向量组α1,α2,…,αs,β线性相关,则
已知n维向量α1,α2,…,αs线性无关,那么可能线性相关的β1,β2,…,βs是
设向量组α1,α2,…,αs(s≥2)线性无关,向量组β1,β2,…,βs能线性表示向量组α1,α2,…,αs,则下列结论中不能成立的是
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).
设矩阵A=[α1,α2,α3,α4]经过初等行变换变为矩阵B=[β1,β2,β3,β4],且α1,α2,α3线性无关,α1,α2,α3,α4线性相关.则
设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示。记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αr线性表示,但不能由向量组α1,α2,…,αr-1线性表示.证明:(1)αr不能由向量组α1,α2,…,αr-1线性表示;(2)αr能由α1,α2,…,αr,β线性表示.
广告位招租WX:84302438

免费的网站请分享给朋友吧