首页/ 题库 / [单选题]设向量组α,β,γ线性无关,而向量组aα的答案

设向量组α,β,γ线性无关,而向量组aα-α,bβ-γ,cγ-α线性相关,则__.

单选题
2022-01-09 23:47
A、abc=1
B、abc=-1
C、a+b+c=0
D、a+b+c=1
查看答案

正确答案
A

试题解析

感兴趣题目
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是(  ).
设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则|A|的值是()。
设3阶方阵A=(α,γ1,γ2),B=(β,γ1,γ2)其中α,β,γ1,γ2都是3维列向量,且|A|=3,|B|=4,则|5A-2B|=____.
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).
设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示。记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αr线性表示,但不能由向量组α1,α2,…,αr-1线性表示.证明:(1)αr不能由向量组α1,α2,…,αr-1线性表示;(2)αr能由α1,α2,…,αr,β线性表示.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数,必有(  ).
设α1,α2,…,αm及β为m+1个n维向量,且β=α1+α2+…+αm(m>1)证明:向量组β-α1,β-α2,…,β-αm线性无关的充分必要条件是α1,α2,…,αm线性无关.
设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则(  ).
相关题目
设 α 1 , α 2 , α 3 ,β,γ 都是4维列向量,且4阶行列式 | α 1 , α 2 , α 3 ,β |=a , | γ, α 1 , α 2 , α 3 |=b ,则4阶行列式 | α 1 , α 2 , α 3 ,β+γ |=
6.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )
设向量组 α1,α2,α3 线性无关,则下列向量组中线性无关的是 ( )。
单选题) 设 α 1 , α 2 , α 3 ,β,γ 都是4维列向量,且4阶行列式 | α 1 , α 2 , α 3 ,β |=a , | γ, α 1 , α 2 , α 3 |=b ,则4阶行列式 | α 1 , α 2 , α 3 ,β+γ |=
设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则
A
的值是()。
设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。
设α,β,γ都是非零向量,α×β=α×γ,则()。
设α,β,γ,δ是维向量,已知α,β线性无关,γ可以由α,β线性表示,δ不能由α,β线性表示,则以下选项正确的是()。
设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的向量组是()。
设向量组α1,α2,α3线性无关,则线性无关的向量组是()。
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()。
已知向量组α,β,γ线性无关,则k≠1是向量组α+kβ,β+kγ,α-γ线性无关的()。
设向量组α1,α2,α3,α4线性相关,则下列向量组中线性无关的是__
设向量组α1,α2,α3线性无关,向量组α2,α3,α4线性相关,则
若向量组α、β、γ线性无关,α、β,δ线性相关,则(  ).
设向量组α1、α2、α3线性无关,则下列向量组中线性无关的是(  ).
设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是(  )。
设向量组α1,α2,…,αs线性无关,而向量组α1,α2,…,αs,β线性相关,则
设向量组α1,α2,…,αs(s≥2)线性无关,向量组β1,β2,…,βs能线性表示向量组α1,α2,…,αs,则下列结论中不能成立的是
设向量组α,β,γ线性无关,而向量组aα-α,bβ-γ,cγ-α线性相关,则__.
广告位招租WX:84302438

免费的网站请分享给朋友吧