设f(x)和g(x)在 (-∞,+ ∞)内可导,且f(x)<g(x),则必有( ).
若f(x)与g(x),在x_0处都不可导,则?(x)=f(x)+g(x)、ψ(x)=f(x)-g(x)在x_0处( )。
设y=f(x)有反函数,x=g(y),且y_0=f(x_0),已知f^' (x_0)=1,f^('_0^' ),则g^('_0^' )( )。
设f(x)=g(a+bx)-g(a-bx),其中g(x)在(-∞,+∞)有定义,且在x=a可导,则f^' (0) =( )。
免费的网站请分享给朋友吧