首页
题目
TAGS
首页
/
题库
/
[单选题]设 α 1, α 2, α 3, α 4的答案
搜答案
设 α 1, α 2, α 3, α 4是 4 维列向量,矩阵 A=( α 1, α 2, α 3, α 4).如果|A|=2,则|-2A|=( )
单选题
2021-07-17 23:20
A、-32
B、-4
C、4
D、32
查看答案
正确答案
D
试题解析
标签:
土木工程
高起本
线性代数
2019级第三学期期末考试
感兴趣题目
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数,必有( ).
已知向量组α1,α2,…,αn线性无关,讨论向量组α1,α1+α2,α1+α2+α3,…,α1+α2+…+αn的线性相关性.
设向量组α1,α2,α3线性无关,则向量组α1+α2,α2+α3,α1+α3线性____.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),当____时,α1、α2、α3线性无关。
设α1,α2,α3线性无关,则与α1,α2,α3等价的是( ).
设α1,α2,…,αm及β为m+1个n维向量,且β=α1+α2+…+αm(m>1)证明:向量组β-α1,β-α2,…,β-αm线性无关的充分必要条件是α1,α2,…,αm线性无关.
设向量α1、α2、α3线性无关,向量β1可由αl、α2、α3线性表示,向量β2不能由α1、α2、α3线性表示,则对任意常数k必有( ).
相关题目
设向量组α1,α2,α3,α4,其中α1,α2,α3线性无关,则向量组中()。
设向量组 α1,α2,α3 线性无关,则下列向量组中线性无关的是 ( )。
设α1,α2,α3,α4 为三维向量,已知α1,α2,α3,线性无关,而α2,α3,α4线性相关,则( )
设向量组α1,α2,α3,α4线性相关,则向量组中( )
设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。
设向量组α1,α2,α3线性无关,则线性无关的向量组是()。
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()。
设向量组α1,α2,α3,α4线性相关,则下列向量组中线性无关的是__
设向量组α1,α2,α3线性无关,向量组α2,α3,α4线性相关,则
设向量组A:α1=(1,0,5,2),α2=(-2,1,-4,1),α3=(-1,1,t,3),α4=(-2,1,-4,1)线性相关,则t必定等于().
设向量组α1、α2、α3线性无关,则下列向量组中线性无关的是( ).
设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是( )。
设向量组α1,α2,…,αs线性无关,而向量组α1,α2,…,αs,β线性相关,则
设向量组α1,α2,…,αs(s≥2)线性无关,向量组β1,β2,…,βs能线性表示向量组α1,α2,…,αs,则下列结论中不能成立的是
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( ).
设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。
设矩阵A=[α1,α2,α3,α4]经过初等行变换变为矩阵B=[β1,β2,β3,β4],且α1,α2,α3线性无关,α1,α2,α3,α4线性相关.则
设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则( ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示。记向量组(Ⅱ):α1,α2,…,αm-1,β,则( ).
设向量β可由向量组α1,α2,…,αr线性表示,但不能由向量组α1,α2,…,αr-1线性表示.证明:(1)αr不能由向量组α1,α2,…,αr-1线性表示;(2)αr能由α1,α2,…,αr,β线性表示.
广告位招租WX:84302438
题库考试答案搜索网
免费的网站请分享给朋友吧