首页/ 题库 / [单选题]设f(x),g(x)的导数相等,则f(x的答案

设f(x),g(x)的导数相等,则f(x)与g(x)()

单选题
2021-09-06 19:31
A、不相等
B、相等
C、仅相差一个常数
D、均为常数
查看答案

正确答案
C

试题解析

感兴趣题目
若f(x)
g(x)h(x)且(f(x),g(x))=1则()。
设f(x)的一个原函数为cosx,g(x)的一个原函数为x2,则f[g(x)]等于:()
设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的什么?()
设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()
设f(x)和g(x)在(-∞,+∞)内可导,且f(x)<g(x),则必有(  )。
设f(x)和g(x)在 (-∞,+ ∞)内可导,且f(x)<g(x),则必有(  ).
设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内(  )。
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<><>
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有(  )。

若f(x)与g(x),在x_0处都不可导,则?(x)=f(x)+g(x)、ψ(x)=f(x)-g(x)在x_0处(  )。

设y=f(x)有反函数,x=g(y),且y_0=f(x_0),已知f^' (x_0)=1,f^('_0^' ),则g^('_0^' )(  )。

相关题目
f(x)=1,g(x)=|x|/x;f(x)=g(x)
设F.(x)=G.(x),则F(x)-G(x)=0
设F.(x)=G.(x),则F(x)-G(x)为常数
已知函数f(x)=lnx2,g(x)=2lnx,则f(x)=g(x)。( )
已知函数f(x)=(x2-1)/(x-1),g(x)=x+1,则f(x)=g(x)。( )
设f(x)在[0,+∞)上有二阶导数,f(0)=0,f(x)在[0,+∞)上为单调减函数,则函数g(x)=f(x)/x在(0,+∞)上为( ).
设f(x)=e,g(x)=1nx则g(f(x))=( )
设f(x),g(x)是恒大于零的可导函数,且 f(x)g(x)-g(x)f(x)<0则当a
设f()在(-∞,+∞)内有定义, lim f ( x ) = a , g ( x ) - f →(,x≠0;g(x)=0,x=0,则()
设f(x),g(x)的导数相等,则f(x)与g(x)()
设f(x)为偶函数,g(x)为奇函数,且f[g(x)]有意义,则f[g(x)]是()
设f(x)有二阶连续导数,且f(0)=0,lim(x→0)f(x)/x^2=1,则()
设f(x),g(x)∈F[x],若f(x)=0则有什么成立?()
设f(x)=3x+2,g(x)=2x-3,则f(g(x))=6x-7。

设f(x)的一个原函数为cosx,g(x)的一个原函数为x2,则f[g(x)]等于:()

带余除法中设f(x),g(x)∈F[x],g(x)≠0,那么F[x]中使f(x)=g(x)h(x)+r(x)成立的h(x),r(x)有几对?()
F[x]中,若(f(x),g(x))=1,则称f(x)与g(x)互素。
若f(x)=bg(x),b∈F*,则f(x)与g(x)相伴。
F[x]中,若f(x)+g(x)=3,则f(0)+g(0)=()。
F[x]中,若f(x)+g(x)=1,则f(x+1)+g(x+1)=()。
广告位招租WX:84302438

免费的网站请分享给朋友吧