正确答案
试题解析
解析:数据挖掘是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合。数据挖掘为探查和分析新的数据类型及用新方法分析旧有数据类型提供了令人振奋的机会。数据挖掘技术可以用来支持广泛的商务智能应用,如顾客分析、定向营销、工作流管理、商店分布和欺诈检测等。数据挖掘的结果可以辅助人们进行决策支持。并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(informationretrieval)领域的任务。虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖于传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。数据挖掘利用了来自如下一些领域的思想:(1)来自统计学的抽样、估计和假设检验,(2)人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。一些其他领域也起到重要的支撑作用。特别地,需要数据库系统提供有效的存储、索引和查询处理支持。源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更至关重要。数据挖掘任务分为下面两大类:(1)预测任务。这些任务的目标是根据其他属性的值,预测特定属性的值。被预测的属性一般称目标变量(targetvariable)或因变量(dependentvariable),而用来做预测的属性称说明变量(explanatoryvariable)或自变量(independentvariable)。(2)描述任务。这里,目标是导出概括数据中潜在联系的模式(相关、趋势、聚类、轨迹和异常)。本质上,描述性数据挖掘任务通常是探查性的,并日常常需要后处理技术验证和解释结果。