A、对任何ε>0,有N>0,使任何n,m>N,有│Xn-Xm≥ε
B、对任何ε>0,任何N>0,有n,m>N,使│Xn-Xm≥ε
C、有ε>0,对任何N>0,有n,m>N,使│Xn-Xm≥ε
D、有ε>0,N>0,对任何n,m>N,有│Xn-Xm≥ε
查看答案
正确答案
试题解析
解析:数列{Xn}存在极限,如用通俗的自然语言来表述则是:当n充分大时,所有的Xn都会很接近的。当n越来越大时,所有的Xn将会“要多近有多近”。不管预定的接近标准ε有多么小,总存在充分大的N,使XN后面的数彼此都非常接近(接近的距离小于ε)。通俗的语言并不严格,但能帮助我们理解。我们应学会用通俗的自然语言来理解,用严格的数学语言来书写。数列{Xn}不存在极限就是对以上表述的否定。就是说,即使n充分大,所有的Xn也不会越来越接近(总是会有些数并不靠拢)。题中的表述C表明,存在一个并不靠拢的间距ε,不管N有多么大,XN后面总有些数不会很靠拢的(距离不小于这个间距ε)。从题中的表述A与B可以推断,对任何ε>0,数列尾部中都会有无穷个彼此距离不小于ε的数。这样的数列如果存在,那也将是极其分散的。当然,这种数列不可能有极限,但不能作为没有极限的一般情况的表述。题中的表述D表明,数列去掉前面确定的一段后,其尾部全部数据彼此距离都不小于某个正常数ε。这也是相当发散的情况,不是无极限的一般情况。表述C与D的主要差别在数列尾部总是存在不接近的数,还是所有的数都不接近。前者是没有极限的一般情况,后者是没有极限的极端情况。没有极限的数列1,2,1,2, 1,2,…,尾部总有不接近的数,但并不是所有的数都不接近。能正确理解常用的严格数学语言是系统分析师必须具备的技能之一。