半径为0.1m的圆盘在铅直平面内转动,在圆盘平面内建立o-xy坐标系,原点在轴上,x和y轴沿水平和铅直向上的方向。边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足θ=1.2t+t 2(θ:rad,t:s)。⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A点的速度和加速度在x和y轴上的投影。
如图4-65所示,忽略质量的细杆OC=ι,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是()。
图示均质圆轮,质量为m,半径为r,在铅垂平面内绕通过圆盘中心O的水平轴转动,角速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力系主矢和惯性力系主矩的大小分别为()。
质量是m,半径是r的匀质圆盘,在铅直平面内绕通过边缘上的一点O的水平轴转动,圆盘在图示瞬间的角速度和角加速度的大小分别是ω和ε,则圆盘的惯性力对点O的主矩的大小是()。
半径为R,质量为m的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知图形上A、B两点的速度方向如图所示。a=45°,且知B点速度大小为vb。则圆轮的动能为()
免费的网站请分享给朋友吧