首页/ 题库 / [单选题]

半径为R,质量为m的均质圆盘在其的答案

半径为R,质量为m的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知图形上A、B两点的速度方向如图所示。a=45°,且知B点速度大小为vb。则圆轮的动能为()

单选题
2022-01-11 14:53
A、mv
B、3mv
C、mv
D、3mv
查看答案

正确答案
B

试题解析

感兴趣题目
忽略质量的细杆OC= ,其端部固结匀质圆盘。杆上点C为圆盘圆心,盘质量为m,半径为r。系统从角速度ω绕轴O转动,系统的动能是()。
质量为m,半径为R的均质圆盘,在边缘A点固结一质量为m的质点,当圆盘以角速度w绕O点转动时,系统动量K的大小为()
质量为m1,半径为r的均质圆盘上,沿水平直径方向焊接一长为 ,质量为m2的均质杆AB。整个物体绕圆盘中心O以角速度w转动,该物体系统的总动量的大小为()。
两个质量相同、半径不同的均质圆盘,初始静止于光滑水平面上,若在此两圆盘上同时作用有相同的常力偶,在下述情况下比较两圆盘的动量、动量矩、动能的大小()。 (1)经过同样的时间间隔。 (2)转过同样的角度。
质量为m1,半径为r的均质圆盘上,沿水平直径方向焊接一长为 ,质量为m2的均质杆AB。整个物体绕圆盘中心O以角速度w转动,该物体系统的总动量的大小为()。
一半径为r的圆盘c以匀角速度w在半径为R的圆形曲面上作纯滚动,则圆盘边缘上M点的加速度a m的大小为()。
如图4-59所示图(a)和图(b)系统中的均质圆盘质量、半径均相同,角速度与角加速度分别为ω1、ω2和al、a2,则有(  )。
如图所示,质量为m 1的均质杆OA,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动。圆心速度为ν,则系统的动能为()。
质量为m、半径为R的均质柱体在水平面上作无滑动的微幅滚动,在CA=a的A点系有两根弹性刚度系数为k的水平弹簧,如下图所示。求系统的固有频率。
如图4-3-13所示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为ω,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。[2010年真题]图4-3-13
质量为m,半径为R的均质圆轮,绕垂直于图面的水平轴O转动,其角速度为ω。在图4-3-10所示瞬时,角加速度为0,轮心C在其最低位置,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。[2013年真题]图4-3-10
质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为w,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:()
相关题目
均质圆盘绕过圆心的定轴O转动,物体的质量为m,角速度为上传图片,半径为r,则圆盘对O轴的动量矩为( )。
均质圆盘绕过圆心的定轴O转动,物体的质量为m,角速度为上传图片,半径为r,则圆盘的动能为( )。
建筑工程设计专业资质分为甲、乙、丙、丁四级,乙级工程设计专业资质的企业,其主要专业技术人员配备总计应为()人,其中一级注册建筑师和一级结构工程师各为2人。

半径为R、质量为m的均质圆轮沿斜面作纯滚动如图4-75所示。已知轮心C的速度为ν、加速度为a,则该轮的动能为()。

质量为m1,半径为r的均质圆盘上,沿水平直径方向焊接一长为,质量为m2的均质杆AB。整个物体绕圆盘中心O以角速度w转动,该物体系统的总动量的大小为()。

长为L,质量为m1的均质杆OA的A端焊接一个半径为r,质量为m2的均质圆盘,该组合物体绕O轴转动的角速度w,则系统对O轴的动量矩H。()。

如图4-65所示,忽略质量的细杆OC=ι,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是()。


]图中均质细圆环质量为m,半径为R,可绕环上O点并垂直于圆环平面的轴转动。已知角速度为w,顺时针转向,试求圆环对O轴的动量矩的大小及转向()


半径为R、质量为m的均质圆盘绕偏心轴O转动,偏心距e=R/2,图示瞬时转动角速度为ω,角加速度为ε,则该圆盘的惯性力系向O点简化的主矢量R1和主矩的大小为()。

均质圆环的质量为m,半径为R,圆环绕O轴的摆动规律为φ=ωt,ω为常数。图4-74所示瞬时圆环对转轴O的动量矩为()。

质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为w,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:()

已知:轮O的半径为R1,质量为m1,质量分布在轮缘上;均质轮C的半径为R2,质量为m2,与斜面纯滚动,初始静止。斜面倾角为θ,轮O受到常力偶M驱动。求:轮心C走过路程s时的速度和加速度。

已知:如图所示均质圆环半径为r,质量为m,其上焊接刚杆OA,杆长为r,质量也为m。用手扶住圆环使其在OA水平位置静止。设圆环与地面间为纯滚动。求:放手瞬时,圆环的角加速度,地面的摩擦力及法向约束力。

半径为R,质量为m的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知图形上A、B两点的速度方向如图所示。a=45°,且知B点速度大小为vb。则圆轮的动能为()

如图4-72所示,质量为m1的均质杆OA,一端铰接在质量为m2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动。圆心速度为ν,则系统的动能为()。

已知均质杆AB的质量m=4kg,长l=600mm,均匀圆盘B的质量为6kg,半径为r=600mm,作纯滚动。弹簧刚度为k=2N/mm,不计套筒A及弹簧的质量。连杆在与水平面成30º角时无初速释放。求(1)当AB杆达水平位置而接触弹簧时,圆盘与连杆的角速度;(2)弹簧的最大压缩量δmax

如图所示,均质圆盘重为W,半径为R,绳子绕过圆盘,两端各挂重为Q和P的物块,绳与盘之间无相对滑动,且不计绳重,则圆盘的角加速度为()。 

在质量为M,半径为R的匀质圆盘上挖出半径为r的两个圆孔,圆孔中心在半径R的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
质量为m,半径为R的均质圆盘,在边缘A点固结一质量为m的质点,当圆盘以角速度w绕O点转动时,系统动量K的大小为()
如图4-65所示,忽略质量的细杆OC=ι,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是()。
广告位招租WX:84302438

免费的网站请分享给朋友吧