首页/ 题库 / [单选题]均质圆环的质量为m,半径为R,圆环绕O轴的答案

均质圆环的质量为m,半径为R,圆环绕O轴的摆动规律为φ=ωt,ω为常数。图4-74所示瞬时圆环对转轴O的动量矩为()。

单选题
2022-01-11 14:14
查看答案

正确答案
B

试题解析

感兴趣题目
质量为m1,半径为r的均质圆盘上,沿水平直径方向焊接一长为 ,质量为m2的均质杆AB。整个物体绕圆盘中心O以角速度w转动,该物体系统的总动量的大小为()。
质量为m1,半径为r的均质圆盘上,沿水平直径方向焊接一长为 ,质量为m2的均质杆AB。整个物体绕圆盘中心O以角速度w转动,该物体系统的总动量的大小为()。
一圆曲线交点处转角为90°,圆曲线设计半径R=50m,则该圆曲线弧长为()m。
设有一半径为R、中心角为φ的圆弧形细棒,其线密度为常数ρ,在圆心处有一质量为m的质点N,求细棒对质点N的引力.
有一底面圆半径为R、高为H的正圆柱体(密度为ρ),在其中心轴上高出上底为α处有一质量为m的质点,求此柱体对该质点的引力。
有一底面圆半径为R、高为H的正圆柱体(密度为ρ),在其中心轴上高出上底为α处有一质量为m的质点,求此柱体对该质点的引力.
均质细直杆OA长为ι,质量为m,A端固结一质量为m的小球(不计尺寸),如图4-76所示。当OA杆以匀角速度ω绕O轴转动时,该系统对O轴的动量矩为()。
以球面顶点O为原点,球心C在O点右侧,则曲率半径r为正(正或负),球心C在O点左侧,则曲率半径r为()
已知:如图所示均质圆环半径为r,质量为m,其上焊接刚杆OA,杆长为r,质量也为m。用手扶住圆环使其在OA水平位置静止。设圆环与地面间为纯滚动。求:放手瞬时,圆环的角加速度,地面的摩擦力及法向约束力。
以凸轮轴轴心O为圆心,轴心O到理论曲线相距最近的点为半径做圆称为()
如图4-3-13所示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为ω,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。[2010年真题]图4-3-13
质量为m,半径为R的均质圆轮,绕垂直于图面的水平轴O转动,其角速度为ω。在图4-3-10所示瞬时,角加速度为0,轮心C在其最低位置,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。[2013年真题]图4-3-10
相关题目
均质圆盘绕过圆心的定轴O转动,物体的质量为m,角速度为上传图片,半径为r,则圆盘对O轴的动量矩为( )。
均质圆盘绕过圆心的定轴O转动,物体的质量为m,角速度为上传图片,半径为r,则圆盘的动能为( )。

半径为R、质量为m的均质圆轮沿斜面作纯滚动如图4-75所示。已知轮心C的速度为ν、加速度为a,则该轮的动能为()。

质量为m1,半径为r的均质圆盘上,沿水平直径方向焊接一长为,质量为m2的均质杆AB。整个物体绕圆盘中心O以角速度w转动,该物体系统的总动量的大小为()。

长为L,质量为m1的均质杆OA的A端焊接一个半径为r,质量为m2的均质圆盘,该组合物体绕O轴转动的角速度w,则系统对O轴的动量矩H。()。

如图4-65所示,忽略质量的细杆OC=ι,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是()。

均质细直杆OA长为,,质量为m,A端固结一质量为m的小球(不计尺寸),如图4-76所示。当OA杆以匀角速度ω绕O轴转动时,该系统对O轴的动量矩为(    )。
均质细直杆OA长为ι,质量为m,A端固结一质量为m的小球(不计尺寸),如图4-76所示。当OA杆以匀角速度ω绕O轴转动时,该系统对O轴的动量矩为()。

质量为2m,半径为R的偏心圆板可绕通过中心O的轴转动,偏心距OC=R/2。在OC连线上的A点固结一质量为m的质点,OA=R如图示。当板以角速度w绕轴O转动时,系统动量K的大小为()。(注:C为圆板的质心)。


]图中均质细圆环质量为m,半径为R,可绕环上O点并垂直于圆环平面的轴转动。已知角速度为w,顺时针转向,试求圆环对O轴的动量矩的大小及转向()


半径为R、质量为m的均质圆盘绕偏心轴O转动,偏心距e=R/2,图示瞬时转动角速度为ω,角加速度为ε,则该圆盘的惯性力系向O点简化的主矢量R1和主矩的大小为()。

均质圆环的质量为m,半径为R,圆环绕O轴的摆动规律为φ=ωt,ω为常数。图4-74所示瞬时圆环对转轴O的动量矩为()。
设质量分布均匀的圆柱体的质量为m,半径为R,绕中心旋转时的角速度为ω,则圆柱体的转动惯量为()。
底圆和顶圆半径分别为R、r,斜长为L的圆台侧面积M为()。
在圆曲线测设中,R为半径、a为转角,曲线要素T=()。

已知:轮O的半径为R1,质量为m1,质量分布在轮缘上;均质轮C的半径为R2,质量为m2,与斜面纯滚动,初始静止。斜面倾角为θ,轮O受到常力偶M驱动。求:轮心C走过路程s时的速度和加速度。

已知:如图所示均质圆环半径为r,质量为m,其上焊接刚杆OA,杆长为r,质量也为m。用手扶住圆环使其在OA水平位置静止。设圆环与地面间为纯滚动。求:放手瞬时,圆环的角加速度,地面的摩擦力及法向约束力。

质量为m,半径为R的均质圆盘,在边缘A点固结一质量为m的质点,当圆盘以角速度w绕O点转动时,系统动量K的大小为()
如图4-65所示,忽略质量的细杆OC=ι,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是()。
质量为m,半径为R的均质圆盘,在边缘A点固结一质量为m的质点,当圆盘以角速度w绕O点转动时,系统动量K的大小为()
广告位招租WX:84302438

免费的网站请分享给朋友吧