如图所示,均质圆盘重为W,半径为R,绳子绕过圆盘,两端各挂重为Q和P的物块,绳与盘之间无相对滑动,且不计绳重,则圆盘的角加速度为()。
如图所示,均质圆盘重为W,半径为R,绳子绕过圆盘,两端各挂重为Q和P的物块,绳与盘之间无相对滑动,且不计绳重,则圆盘的角加速度为()。
如图所示,皮带传动装置中,小轮半径为r,大轮半径为2r,A和R分别是两个轮边缘上的质点,大轮中另一质点P到转动轴的距离也为r,皮带不打滑。则()。
半径为R、质量为m的均质圆轮沿斜面作纯滚动如图4-75所示。已知轮心C的速度为ν、加速度为a,则该轮的动能为()。
如图4-40所示,绳子的一端绕在滑轮上,另一端与置于水平面上的物块B相连,若物B的运动方程为x=kt2,其中k为常数,轮子半径为R,则轮缘上A点的加速度的大小为()。
半圆形明渠如图所示,半径r=4m,其水力半径R为()
质量为m1,半径为r的均质圆盘上,沿水平直径方向焊接一长为,质量为m2的均质杆AB。整个物体绕圆盘中心O以角速度w转动,该物体系统的总动量的大小为()。
(2011)均质杆AB长为ι,重为W,受到如图所示的约束,绳索ED处于铅垂位置,A、B两处为光滑接触,杆的倾角为α,又CD=ι/4,则A、B两处对杆作用的约束力大小关系为:()
]如图所示,均质圆柱A、B重均为P,半径均为r,绳子一端绕在绕O轴转动的A圆柱上,另一端绕在B圆柱上。若不计摩擦,则B落下时其质心C的加速度aC为()。
长为L,质量为m1的均质杆OA的A端焊接一个半径为r,质量为m2的均质圆盘,该组合物体绕O轴转动的角速度w,则系统对O轴的动量矩H。()。
如图4-65所示,忽略质量的细杆OC=ι,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是()。
质量为2m,半径为R的偏心圆板可绕通过中心O的轴转动,偏心距OC=R/2。在OC连线上的A点固结一质量为m的质点,OA=R如图示。当板以角速度w绕轴O转动时,系统动量K的大小为()。(注:C为圆板的质心)。
半径为R、质量为m的均质圆盘绕偏心轴O转动,偏心距e=R/2,图示瞬时转动角速度为ω,角加速度为ε,则该圆盘的惯性力系向O点简化的主矢量R1和主矩的大小为()。
质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为w,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:()
图示均质圆盘作定轴转动,其中图a)、c)的转动角速度为常数(w=C),而图b)、d)的角速度不为常数(w≠C),则哪个图示圆盘的惯性力系简化的结果为平衡力系?()
如图所示,均质杆OA,重为P,长为2l,绕过O端的水平轴在铅直面内转动,转到角时,有角速度ω和角加速度ε,则此时铰链O处约束力T和N为()。
半径为R,质量为m的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知图形上A、B两点的速度方向如图所示。a=45°,且知B点速度大小为vb。则圆轮的动能为()
如图所示,物块A重为P,连在不计重量、不伸长的绳子上。绳子绕过定滑轮D并绕在鼓轮B上。当A下落时带动轮C沿水平直线轨道作纯滚动。鼓轮B的半径为r,C的半径为R,两轮固连,总重为Q,其对水平中心轴O的回转半径为ρ,轮D半径r,重不计,则物块A的加速度a为()。
如图4-72所示,质量为m1的均质杆OA,一端铰接在质量为m2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动。圆心速度为ν,则系统的动能为()。
免费的网站请分享给朋友吧