首页/ 题库 / [单选题]质量为m,半径为R的均质圆盘,绕垂直于图的答案

质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为w,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:()

单选题
2023-03-20 16:36
A、A
B、B
C、C
D、D
查看答案

正确答案
A

试题解析

标签: CMS专题
感兴趣题目
质量为m1,半径为r的均质圆盘上,沿水平直径方向焊接一长为 ,质量为m2的均质杆AB。整个物体绕圆盘中心O以角速度w转动,该物体系统的总动量的大小为()。
质量为m1,半径为r的均质圆盘上,沿水平直径方向焊接一长为 ,质量为m2的均质杆AB。整个物体绕圆盘中心O以角速度w转动,该物体系统的总动量的大小为()。
均质细直杆OA长为ι,质量为m,A端固结一质量为m的小球(不计尺寸),如图4-76所示。当OA杆以匀角速度ω绕O轴转动时,该系统对O轴的动量矩为()。
如图所示,质量为m 1的均质杆OA,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动。圆心速度为ν,则系统的动能为()。
图示均质圆盘作定轴转动,其中图a)、c)的转动角速度为常数(w=C),而图b)、d)的角速度不为常数(w≠C),则哪个图示圆盘的惯性力系简化的结果为平衡力系?()
图示均质圆盘作定轴转动,其中图a)、c)的转动角速度为常数(w=C),而图b)、d)的角速度不为常数(w≠C),则哪个图示圆盘的惯性力系简化的结果为平衡力系?()
质量是m,半径是r的匀质圆盘,在铅直平面内绕通过边缘上的一点O的水平轴转动,圆盘在图示瞬间的角速度和角加速度的大小分别是ω和ε,则圆盘的惯性力对点O的主矩的大小是()。
图示机构中,杆件OA以匀角速度w绕O轴转动,滚轮B沿水平面作纯滚动,如图示。已知OA=l,AB=2l,滚动半径为r。在图示位置时,OA铅直,滚轮B的角速度wB为()。
如图4-3-13所示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为ω,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。[2010年真题]图4-3-13
质量为m,半径为R的均质圆轮,绕垂直于图面的水平轴O转动,其角速度为ω。在图4-3-10所示瞬时,角加速度为0,轮心C在其最低位置,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。[2013年真题]图4-3-10
质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为w,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:()
质量为m,半径为R的均质圆轮,绕垂直于图面的水平轴O转动,其角速度为ω。在图4-3-15所示瞬时,角加速度为0,轮心C在其最低位置,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。[2013年真题]
图4-3-15
相关题目
一个圆盘在水平面内绕一竖直固定轴转动的转动惯量为I,初始角速度为w 0,后来变为1/2ωo.在上述过程中,阻力矩所作的功为:
刚体绕垂直于图面的O轴转动。若w=0,ε≠0,则通过O点的直线MN上各点的加速度分布图如图中()。

质量为m1,半径为r的均质圆盘上,沿水平直径方向焊接一长为,质量为m2的均质杆AB。整个物体绕圆盘中心O以角速度w转动,该物体系统的总动量的大小为()。

质量为m,长度为的均质杆铰接于O点,A端固结一质量为m的质点如图示。当OA杆以角速度w绕O轴转动时,系统对轴O的动量矩的大小为()。

长为L,质量为m1的均质杆OA的A端焊接一个半径为r,质量为m2的均质圆盘,该组合物体绕O轴转动的角速度w,则系统对O轴的动量矩H。()。

如图4-65所示,忽略质量的细杆OC=ι,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是()。

均质细直杆OA长为,,质量为m,A端固结一质量为m的小球(不计尺寸),如图4-76所示。当OA杆以匀角速度ω绕O轴转动时,该系统对O轴的动量矩为(    )。
均质细直杆OA长为ι,质量为m,A端固结一质量为m的小球(不计尺寸),如图4-76所示。当OA杆以匀角速度ω绕O轴转动时,该系统对O轴的动量矩为()。

质量为2m,半径为R的偏心圆板可绕通过中心O的轴转动,偏心距OC=R/2。在OC连线上的A点固结一质量为m的质点,OA=R如图示。当板以角速度w绕轴O转动时,系统动量K的大小为()。(注:C为圆板的质心)。

图示均质圆轮,质量为m,半径为r,在铅垂平面内绕通过圆盘中心O的水平轴转动,角速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力系主矢和惯性力系主矩的大小分别为()。


]图中均质细圆环质量为m,半径为R,可绕环上O点并垂直于圆环平面的轴转动。已知角速度为w,顺时针转向,试求圆环对O轴的动量矩的大小及转向()


半径为R、质量为m的均质圆盘绕偏心轴O转动,偏心距e=R/2,图示瞬时转动角速度为ω,角加速度为ε,则该圆盘的惯性力系向O点简化的主矢量R1和主矩的大小为()。

质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为w,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:()

设质量分布均匀的圆柱体的质量为m,半径为R,绕中心旋转时的角速度为ω,则圆柱体的转动惯量为()。

图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为w,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:()

图示均质圆盘质量为m,绕固定轴O转动,角速度均为w。动能为()。
图示均质圆盘质量为m,绕固定轴O转动,角速度均为w。动能为()。
质量为m,半径为R的均质圆盘,在边缘A点固结一质量为m的质点,当圆盘以角速度w绕O点转动时,系统动量K的大小为()
如图4-65所示,忽略质量的细杆OC=ι,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是()。
质量为m,半径为R的均质圆盘,在边缘A点固结一质量为m的质点,当圆盘以角速度w绕O点转动时,系统动量K的大小为()
广告位招租WX:84302438

免费的网站请分享给朋友吧