对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?
有两个二元随机变量X和Y,它们的联合概率为P[X=0,Y=0]=1/8,P[X=0,Y=1]=3/8,P[X=1,Y=1]=1/8,P[X=1,Y=0]=3/8。定义另一随机变量Z=XY,试计算:
(1)H(X),H(Y),H(Z),H(XZ),H(YZ),H(XYZ);
(2)H(X/Y),H(Y/X),H(X/Z),H(Z/X),H(Y/Z),H(Z/Y),H(X/YZ),H(Y/XZ),H(Z/XY);
(3)I(X;Y),I(X;Z),I(Y;Z),I(X;Y/Z),I(Y;Z/X),I(X;Z/Y)。
z=f(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件()?
函数y=f(x)在点x_0处可导是f(x)在点x_0处连续的( )。
设函数y=f(x)在点x_0可导,当自变量由x_0增至x_0+Δx时,记Δy为f(x)的增量,dy为f(x)的微分,则(Δy-dy)/Δx→( )(当Δx→0时)。
设函数y=f(x)在点x_0处可导,Δy=f(x_0+h)-f(x_0),则当h→0时,必有( )。
对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?
已知函数f(x)=x-alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值。
免费的网站请分享给朋友吧