在铅直平面内有质量皆为m的细铁环和均质网盘.半径皆为r,如图所示。C为质心,O为固定光滑铰支座,当两图中OC均为水平位置时,同时无初速释放。不用计算,试回答:()。 (1)在释放的瞬时,哪个物体的角加速度较大? (2)当OC摆至铅直位置时,哪个图中的动量较大? (3)当OC摆至铅直位置时,哪个图中的动能较大? (4)当OC摆至铅直位置时,哪个图中对O点的动量矩较大?
在下图中,若两轮的转动惯量皆为J,质心都在各自转轴上,轮1半径为R,轮2半径为r且R>r,两轮接触处无相对滑动,轮1的角速度为ω。下述各说法正确的是()。
半径为R、质量为m的均质圆轮沿斜面作纯滚动如图4-75所示。已知轮心C的速度为ν、加速度为a,则该轮的动能为()。
半圆形明渠如图所示,半径r=4m,其水力半径R为()
如图4-65所示,忽略质量的细杆OC=ι,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是()。
如图所示,均质杆OA,重为P,长为l,可在铅直平面内绕水平固定轴O转动。杆在图示铅直位置时静止,欲使杆转到水平位置,则至少要给杆以角速度ω为()。
图示均质轮和均质杆,质量均为m;轮子半径均为R,杆长均为l;轮和杆均以角速度ω转动,其中图B中,轮在直线轨道上作纯滚动,则它们的动量大小按图次序为()。
已知:轮O的半径为R1,质量为m1,质量分布在轮缘上;均质轮C的半径为R2,质量为m2,与斜面纯滚动,初始静止。斜面倾角为θ,轮O受到常力偶M驱动。求:轮心C走过路程s时的速度和加速度。
已知:如图所示均质圆环半径为r,质量为m,其上焊接刚杆OA,杆长为r,质量也为m。用手扶住圆环使其在OA水平位置静止。设圆环与地面间为纯滚动。求:放手瞬时,圆环的角加速度,地面的摩擦力及法向约束力。
半径为R,质量为m的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知图形上A、B两点的速度方向如图所示。a=45°,且知B点速度大小为vb。则圆轮的动能为()
免费的网站请分享给朋友吧