首页/ 题库 / [单选题]匀质圆盘半径为R,质量为m,沿斜面作纯滚的答案

匀质圆盘半径为R,质量为m,沿斜面作纯滚动。已知轮心加速度为a,则圆盘个质点的惯性力向O点简化的结果是: 惯性力系主矩 MQO 大小等于( )。

单选题
2021-07-17 20:17
A、<IMG src="https://s3.cn-north-1.amazonaws.com.cn/qingshuxuetang/staticQuestionImg/98c0431c-3827-44f2-985f-76f512c64272.jpg"title="1375001037988.jpg" alt="1375001037988.jpg"/>
B、<IMG src="https://s3.cn-north-1.amazonaws.com.cn/qingshuxuetang/staticQuestionImg/c65bea76-8d22-4f6b-a7ce-7a3980b4e4bc.jpg"title="1375001048644.jpg" alt="1375001048644.jpg"/>
D、1.0
查看答案

正确答案
B

试题解析

标签:
感兴趣题目
忽略质量的细杆OC=L,其端部固结匀质圆盘。杆上点C为圆盘圆心,盘质量为m,半径为r。系统从角速度ω绕轴O转动,系统的动能是( )。
如图4-77所示三个质量、半径相同的圆盘A、B和C,放在光滑的水平面上;同样大小和同方向的力F分别作用于三个圆盘的不同点,则惯性力分别向各自质心简化的结果是()。
质量是m,半径是r的匀质圆盘,在铅直平面内绕通过边缘上的一点O的水平轴转动,圆盘在图示瞬间的角速度和角加速度的大小分别是ω和ε,则圆盘的惯性力对点O的主矩的大小是()。
一半径为r的圆盘c以匀角速度w在半径为R的圆形曲面上作纯滚动,则圆盘边缘上M点的加速度a m的大小为()。
匀质圆盘的质量为 ,半径为r,若圆盘在水平面上作无滑动滚动(盘心速度为 1374997651238.jpg)时,则圆盘动能T=(  )。
如图所示,质量为m 1的均质杆OA,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动。圆心速度为ν,则系统的动能为()。
图示均质圆盘作定轴转动,其中图a)、c)的转动角速度为常数(w=C),而图b)、d)的角速度不为常数(w≠C),则哪个图示圆盘的惯性力系简化的结果为平衡力系?()
图示均质圆盘作定轴转动,其中图a)、c)的转动角速度为常数(w=C),而图b)、d)的角速度不为常数(w≠C),则哪个图示圆盘的惯性力系简化的结果为平衡力系?()
质量是m,半径是r的匀质圆盘,在铅直平面内绕通过边缘上的一点O的水平轴转动,圆盘在图示瞬间的角速度和角加速度的大小分别是ω和ε,则圆盘的惯性力对点O的主矩的大小是()。
如图4-3-13所示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为ω,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。[2010年真题]图4-3-13
质量为m,半径为R的均质圆轮,绕垂直于图面的水平轴O转动,其角速度为ω。在图4-3-10所示瞬时,角加速度为0,轮心C在其最低位置,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为(  )。[2013年真题]图4-3-10
质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为w,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:()
相关题目
匀质圆盘的质量为 ,半径为r,若圆盘在光滑水平面上以速度 1374997716113.jpg平动时,则圆盘动能T=(  )。
匀质圆盘半径为R,质量为m,沿斜面作纯滚动。已知轮心加速度为a,则圆盘个质点的惯性力向O点简化的结果是: 惯性力系主矩 MQO 大小等于( )。
匀质圆盘半径为R,质量为m,沿斜面作纯滚动。已知轮心加速度为a,则圆盘个质点的惯性力向O点简化的结果是:惯性力系主矩MQO大小等于( )。1375000852426.jpg
匀质圆盘半径为R,质量为m,沿斜面作纯滚动。已知轮心加速度为a,则圆盘个质点的惯性力向O点简化的结果是: 惯性力系主矩 M QO 的大小等于(  )。
匀质圆盘半径为R,质量为m,沿斜面作纯滚动。已知轮心加速度为a,则圆盘个质点的惯性力向O点简化的结果是:惯性力系主矢的大小等于(  )。

半径为R、质量为m的均质圆轮沿斜面作纯滚动如图4-75所示。已知轮心C的速度为ν、加速度为a,则该轮的动能为()。

图示均质圆轮,质量为m,半径为r,在铅垂平面内绕通过圆盘中心O的水平轴转动,角速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力系主矢和惯性力系主矩的大小分别为()。

质量是m,半径是r的匀质圆盘,在铅直平面内绕通过边缘上的一点O的水平轴转动,圆盘在图示瞬间的角速度和角加速度的大小分别是ω和ε,则圆盘的惯性力对点O的主矩的大小是()。

半径为R、质量为m的均质圆盘绕偏心轴O转动,偏心距e=R/2,图示瞬时转动角速度为ω,角加速度为ε,则该圆盘的惯性力系向O点简化的主矢量R1和主矩的大小为()。

质量为m,半径为R的均质圆盘,绕垂直于图面的水平轴O转动,其角速度为w,在图示瞬时,角加速度为零,盘心C在其最低位置,此时将圆盘的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:()

图示均质圆轮,质量为m,半径为r,在铅垂图面内绕通过圆盘中心O的水平轴转动,角速度为w,角加速度为ε,此时将圆轮的惯性力系向O点简化,其惯性力主矢和惯性力主矩的大小分别为:()

已知:轮O的半径为R1,质量为m1,质量分布在轮缘上;均质轮C的半径为R2,质量为m2,与斜面纯滚动,初始静止。斜面倾角为θ,轮O受到常力偶M驱动。求:轮心C走过路程s时的速度和加速度。

一匀质圆盘的惯性半径等于圆盘的半径。
在质量为M,半径为R的匀质圆盘上挖出半径为r的两个圆孔,圆孔中心在半径R的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
质量为m,半径为R的均质圆盘,在边缘A点固结一质量为m的质点,当圆盘以角速度w绕O点转动时,系统动量K的大小为()
忽略质量的细杆OC= ,其端部固结匀质圆盘。杆上点C为圆盘圆心,盘质量为m,半径为r。系统从角速度ω绕轴O转动,系统的动能是()。
忽略质量的细杆OC=L,其端部固结匀质圆盘。杆上点C为圆盘圆心,盘质量为m,半径为r。系统从角速度ω绕轴O转动,系统的动能是( )。
忽略质量的细杆OC= ,其端部固结匀质圆盘。杆上点C为圆盘圆心,盘质量为m,半径为r。系统从角速度ω绕轴O转动,系统的动能是()。
质量为m,半径为R的均质圆盘,在边缘A点固结一质量为m的质点,当圆盘以角速度w绕O点转动时,系统动量K的大小为()
忽略质量的细杆OC=L,其端部固结匀质圆盘。杆上点C为圆盘圆心。盘质量为m,半径为r。系统以角速度w绕轴O转动。系统的动能是:()
广告位招租WX:84302438

免费的网站请分享给朋友吧