首页/ 题库 / [单选题]若f(x)在(a,b)内满足f’(x)<的答案

若f(x)在(a,b)内满足f’(x)<0,f"(x)>0,则曲线y=f(x)在(a,b)内是().

单选题
2022-01-11 19:41
A、单调上升且是凹的
B、单调下降且是凹的
C、单调上升且是凸的
D、单调下降且是凸的
查看答案

正确答案
B

试题解析

感兴趣题目
若f(x)在(a,b)内满足f’(x)<0,f"(x)>0,则曲线y=f(x)在(a,b)内是().
设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
设函数y=f(x)的定义域为[a,b],其中b>-a>0,那么F(x)=f(x)+f(-x)的定义域为(  ).
设在区间(-∞,+∞)内函数f(x)>0,且当k为大于0的常数时有f(x+k)=1/f(x)则在区间(-∞,+∞)内函数f(x)是(  )。
设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内(  )。
若f(x)是奇函数且f′(0)存在,则x=0是函数F(x)=f(x)/x的(  )。
设f(x)满足af(x)+bf(1/x)=c/x,其中a、b、c都是常数且|a|≠|b|。  (1)证明:f(x)=-f(-x);  (2)求f′(x),f″(x),f(n)(x);  (3)若c>0,|a|>|b|,则a、b满足什么条件f(x)才有极大值和极小值?
当a<x<b时,有f′(x)>0,f″(x)<0,则在区间(a,b)内,函数y=f(x)的图形沿x轴正向是(  )。[2012年真题]
设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。
设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]

已知f(x)在[a,b]上可导,则f^' (x)<0是f(x)在[a,b]上单减的(  )。

f(x)在(a,b)内连续,且x_0∈(a,b),则在x_0处(  )。

相关题目
在区间(a,b)内,如果f(x)>0,则函数y=f(x)在区间内单调递增。( )
在区间(a,b)内,如果函数y=f(x)单调递增,则必有f(x)>0。( )
设f(x)在[0,+∞)上有二阶导数,f(0)=0,f(x)在[0,+∞)上为单调减函数,则函数g(x)=f(x)/x在(0,+∞)上为( ).
设f(x)在[a,b]上连续,在(a,b)内可导,若在(a,b)内f(x)﹥0,且存在唯一的x0∈(a,b),使得f(x0)=0,则f(x)( ).
设函数f(x)对任意x均满足等式f(1+x)=ax,且有f(0)=b,其中a,b为非零常数,则( )。
若函数f(x)在区间[a,b]上单调递减,那么对任意x[a,b],恒有f'(x)>0
若在区间(a,b)内,函数f(x)的一阶导数f.(x)>0, 二阶导数 f..(x)<0,则函数f(x)在此区间内( )
设函数f(x)=x/a+ebx在(-∞,+∞)内连续,且limf(x)=0,则常数a,b满足( ). .
函数y=f(x)满足f(1)=2f(1)=0,且当x<1时,f(x)<0;当x>1时,f(x)>0,则有()
设f()在(-∞,+∞)内有定义, lim f ( x ) = a , g ( x ) - f →(,x≠0;g(x)=0,x=0,则()
设f(x)= 在区间(- ∞,+ ∞)上连续,且f(x)=0,则a,b满足()
设函数f(x)在(a,b)且f(x)=f(x)=0则函数在x=x处( )
若y=f(x)在(∞,+∞)内二阶可导,且f(-x)=f(x)当x>0时,f(x)>0,f(x)<0则<0时,有()
( x ) 设f(x)在0,a上二阶可导,且xf(x)-f(x)>0则F(x)/x 在(0,a)内是()
设f(x)=x,x∈(-,+)在(∞,0)f(x)>0f(x)<0则f()在(0,+∞内()
若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().
若函数f(x)在[a,b]上,一阶导大于0且二阶导也大于0,则曲线y=f(x)在[a,b]上沿X轴正向()。
若f(x)∈F[x],若c∈F使得f(c)=0,则称c是f(x)在F中的一个根。
(2013)若f(-x)=-f(x)(-∞0,f″(x)<0,则f(x)在(0,+∞)内是:()
F[x]中,若f(x)+g(x)=3,则f(0)+g(0)=()。
广告位招租WX:84302438

免费的网站请分享给朋友吧