首页/ 题库 / [单选题]设函数f(x)满足关系式f″(x)+[f的答案

设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。

单选题
2022-09-30 20:11
A、f(0)是f(x)的极大值
B、f(0)是f(x)的极小值
C、点(0,f(0))是曲线y=f(x)的拐点
D、f(0)不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点
查看答案

正确答案
C

试题解析

已知f″(x)+[f′(x)]2=x,方程两边对x求导得f‴(x)+2f″(x)·f′(x)=1,由f′(0)=0,则f″(0)=0,f‴(0)=1,故在点x=0的某邻域内f″(x)单调增加,即f″(0)与f″(0)符号相反,故点(0,f(0))是曲线y=f(x)的拐点。

感兴趣题目
设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。

设4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,则f(x)等于:()

设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=____。
设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=(  )。
设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=(  )。
设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内(  )。
若f(x)是奇函数且f′(0)存在,则x=0是函数F(x)=f(x)/x的(  )。
设f(x)满足af(x)+bf(1/x)=c/x,其中a、b、c都是常数且|a|≠|b|。  (1)证明:f(x)=-f(-x);  (2)求f′(x),f″(x),f(n)(x);  (3)若c>0,|a|>|b|,则a、b满足什么条件f(x)才有极大值和极小值?
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<><>
设函数f(x)满足关系式f″(x)+[f′(x)]2=x,且f′(0)=0,则(  )。
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有(  )。

设y=f(x)有反函数,x=g(y),且y_0=f(x_0),已知f^' (x_0)=1,f^('_0^' ),则g^('_0^' )(  )。

相关题目
设函数f(x)=x/x-1,则当x≠0且x≠1时,f[1/f(x)]=()
设函数f(x)=e^x (x≠0),那么f(x+1 )*f(x+2 )为( )
设函数f(x)=x,则当x≠0且x≠1时,fX - 1 /f ( x ) =()
设函数f(x)=x/x-1,则当x≠0且x1时,f1/f(x)( )
设函数费(x)=x/x+1,则当x≠0且x≠1时,f[1/f(x)]=( )
设函数可导y=f(x),且f(xo)≠0,则当x∆→0时,函数f(x)在xo处的微分dy是( )
设f(x)在[0,+∞)上有二阶导数,f(0)=0,f(x)在[0,+∞)上为单调减函数,则函数g(x)=f(x)/x在(0,+∞)上为( ).
若f(x)为奇函数且对任意的x有f ( x + 3 ) - f ( x - 1 ) = 0 , f ( 2 ) = ( ) ( 3 . 5 )
函数y=f(x)满足f(1)=2f(1)=0,且当x<1时,f(x)<0;当x>1时,f(x)>0,则有()
设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(﹣5/2)=
设f(x),g(x)是恒大于零的可导函数,且 f(x)g(x)-g(x)f(x)<0则当a
设函数f(x)在(a,b)且f(x)=f(x)=0则函数在x=x处( )
设函数f(x)=x(x-1)(2x-1)(x+2),则方程f(x)=0有()
设f(x)有二阶连续导数,且f(0)=0,lim(x→0)f(x)/x^2=1,则()
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f"(x)>0,则在(-∞,0)内必有()。
设可导函数f(x)满足xf′(x)-f(x)>0,则()。
若函数f(x)在定义域{x|x∈R且x≠0}上是偶函数,且在(0,+∞)上是减函数,f(2)=0,则函数f(x)的零点有(  ).
设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。
设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。
广告位招租WX:84302438

免费的网站请分享给朋友吧