首页
题目
TAGS
首页
/
题库
/
[单选题]6.设3阶方阵A的特征多项式为|λE-A的答案
搜答案
6.设3阶方阵A的特征多项式为|λE-A|=(λ+2)(λ+3)^2,则|A|=( )
单选题
2021-09-01 19:09
A、18
查看答案
正确答案
A
试题解析
标签:
联大
河南大学
线性代数
感兴趣题目
设λ1,λ2是n阶矩阵A的特征值,α2,α2分别是A的对应于λ1,λ2的特征向量,则
设A为n阶实对称矩阵,P为n阶可逆矩阵,设n维向量a是A的属于特征值λ的特征向量,则(P-1AP)T的属于特征值λ的特征向量是__
设λ1,λ2是矩阵A的两个不同的特征值,ξ、η是a的分别属于λ1、λ2的特征向量,则以下选项正确的是()。
设A是三阶实对称矩阵,λ1,λ2,λ3是三个非零特征值,且满足a≥λ1≥λ2≥λ3≥b,若kA+E是正定矩阵,则参数k应满足
设A是三阶实对称矩阵,λ1,λ2,λ3是A的三个特征值,且满足a≥λ1≥λ2≥λ3≥b,若A-μE是正定阵,则参数μ应满足__.
设x1、x2是三阶矩阵A的属于特征值λ1的两个线性无关的特征向量,x3是A的属于特征值λ2的特征向量,且λ1≠λ2,则()。
设n阶矩阵A=(aij)的特征值为λ1,λ2,…,λn,试证:λ1+λ2+…+λn=a11+a22+…+ann(称为A的迹),且|A|=λ1·λ2…λn。
设λ1,λ2是矩阵A的两个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是( )。
设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )
设λ1=6,λ2=λ3=3为三阶实对称矩阵A的特征值,属于λ2=λ3=3的特征向量为ξ2=(-1,0,1)T,ξ3=(1,2,1)T,则属于λ1=6的特征向量是( )。[2017年真题]
相关题目
设 A 为 3 阶方阵,其特征值分别为 2,1,0 则|A+2E|=( )
6.设3阶方阵A的特征多项式为|λE-A|=(λ+2)(λ+3)^2,则|A|=( )
λ=2是非奇异方阵A的一个特征值,则(1/3A^2)^4的特征值为( ).
设λ1,λ2是矩阵A的两个不同的特征值,a1和a2一定线性相关。( )
设λ1,λ2是实对称矩阵A的两个不同的特征值,a1,a2是对应于λ1,λ2的特征向量,若a1,a2正交,则λ1≠λ2( )
设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( ) 得分:0分
设矩阵A=[1 1 1 -1 3 1 1 -1 1]的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )
设矩阵A(-1 2 3 0 1 1 0 2 2),则A的对应于特征值λ=0的特征向量为( )
设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )(单选)—4分
[1 -1 1]设矩阵 A=[1 3 -1][11 1]的三个特征值分别为 λ 1, λ 2, λ 3,则 λ 1+ λ 2+ λ 3= ( )
设矩阵A=[1-1 1][13 -1][11 1]的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )
设λ1,λ2是矩阵A的2个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是:()
设列向量p=[1,-1,2]T是3阶方阵相应特征值λ的特征向量,则特征值λ等于().
(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()
设a=2,b=3,c=4,d=5,下列表达式的值是( )。 3>2*b Or a=c And bc Or ba+c
设A为三阶方阵,λ1=1,λ2=-2,λ3=-1为其三个特征值,对应特征向量依次为α1,
设有向量组α1=(6,λ+1,7),α2=(λ,2,2),α3=(λ,l,0)线性相关,则( ).
设线性方程组(λE-A)x=0的两个不同解向量是ξ1,ξ2,则矩阵A的对应于特征值λ的特征向量必是
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充要条件为
设A是n阶矩阵,λ1,λ2是A的特征值,ζ1,ζ2是A的分别对应于λ1,λ2的特征向量,则()。
广告位招租WX:84302438
题库考试答案搜索网
免费的网站请分享给朋友吧