首页/ 题库 / [单选题]设有向量组α1=(6,λ+1,7),α2的答案
相关题目
设 3 阶方阵 A=(α1,α2,α3),其中αi(i=1,2,3)为 A 的列向量,若|B|=|(α1+2α2,α2,α3)|=6,则|A|=( )
设向量组α1,α2,α3,α4,其中α1,α2,α3线性无关,则向量组中()。
6.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )
已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。
已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。
设有向量组α1=(2,1,4,3)T,α1=(-1,1,-6,6)T,α3=(-1,-2,2,-9)T,α4=(1,1,-2,7)T,α5=(2,4,4,9)T,则向量组α1,α2,α3,α4,α5的秩是()。
设A为三阶方阵,λ1=1,λ2=-2,λ3=-1为其三个特征值,对应特征向量依次为α1,
设n维向量组α1,α2,α3,α4,α5的秩为3,且满足α1+2α3-3α5=0,α2=2α4,则该向量组的极大线性无关组是
设向量组α1,α2,α3线性无关,向量组α2,α3,α4线性相关,则
设有向量组α1=(6,λ+1,7),α2=(λ,2,2),α3=(λ,l,0)线性相关,则(  ).
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试求出t为何值时向量α1,α2,α3线性相关或线性无关.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充要条件为
设λ1,λ2是n阶矩阵A的特征值,α2,α2分别是A的对应于λ1,λ2的特征向量,则
设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示。记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αr线性表示,但不能由向量组α1,α2,…,αr-1线性表示.证明:(1)αr不能由向量组α1,α2,…,αr-1线性表示;(2)αr能由α1,α2,…,αr,β线性表示.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数,必有(  ).
若使向量组α1=(6,t,7)T,α2=(4,2,2)T,α3=(4,1,0)T线性相关,则t等于(  )。[2016年真题]
已知向量组(α1,α3),(α1,α3,α4),(α2,α3,)都线性无关,而(α1,α2,α3,α4)线性相关,则向量组(α1,α2,α3,α4)的极大无关组是____.
已知向量组α1,α2,…,αn线性无关,讨论向量组α1,α1+α2,α1+α2+α3,…,α1+α2+…+αn的线性相关性.
广告位招租WX:84302438

免费的网站请分享给朋友吧