首页/ 题库 / [填空题]设α1=(1+λ,1,1),α2=(1,的答案

设α1=(1+λ,1,1),α2=(1,1+λ,1),α3=(1,1,1+λ),若β=(0,λ,λ2)可以由αl、α2、α3线性表示且表示法是唯一的,则λ应满足的条件是____.

填空题
2022-01-11 19:39
查看答案

正确答案
λ≠0且λ≠-3

试题解析

设β=x1a1+x2a2+x3a3对方程组的增广矩阵作初等行变换,
则λ≠0,否则方程组有无穷多解;λ≠-3,否则方程组无解.

相关题目
若α1:α2:α3:β1:β2都是四维列向量,且四阶行列式|α1:α2:α3:β1|=m,|α1:α2;α3:β2|=n,则行列式|α1:α2:α3:β1+β2|等于()
设向量α1=(-1,4),α2=(1,-2),α3=(3,-8),若有常数a,b使aα1-bα2-α3=0,则( )
设矩阵A=[1 1 1 -1 3 1 1 -1 1]的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )
[1 -1 1]设矩阵 A=[1 3 -1][11 1]的三个特征值分别为 λ 1, λ 2, λ 3,则 λ 1+ λ 2+ λ 3= ( )
设矩阵A=[1-1 1][13 -1][11 1]的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )
已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。
向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )
设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().
设向量组A:α1=(1,-1,0),α2=(2,1,t),α3=(0,1,1)线性相关,则t等于()。
设A为三阶方阵,λ1=1,λ2=-2,λ3=-1为其三个特征值,对应特征向量依次为α1,
设向量组A:α1=(1,0,5,2),α2=(-2,1,-4,1),α3=(-1,1,t,3),α4=(-2,1,-4,1)线性相关,则t必定等于().
当a=()时向量组α1=(3,1,2,12),α2=(-1,a,1,1),α3=(1,-1,0,2)线性相关
设有向量组α1=(6,λ+1,7),α2=(λ,2,2),α3=(λ,l,0)线性相关,则(  ).
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试求出t为何值时向量α1,α2,α3线性相关或线性无关.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充要条件为
设λ1,λ2是n阶矩阵A的特征值,α2,α2分别是A的对应于λ1,λ2的特征向量,则
设矩阵A=[α1,α2,α3,α4]经过初等行变换变为矩阵B=[β1,β2,β3,β4],且α1,α2,α3线性无关,α1,α2,α3,α4线性相关.则
设向量β可由向量组α1,α2,…,αr线性表示,但不能由向量组α1,α2,…,αr-1线性表示.证明:(1)αr不能由向量组α1,α2,…,αr-1线性表示;(2)αr能由α1,α2,…,αr,β线性表示.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数,必有(  ).
已知向量组α1,α2,…,αn线性无关,讨论向量组α1,α1+α2,α1+α2+α3,…,α1+α2+…+αn的线性相关性.
广告位招租WX:84302438

免费的网站请分享给朋友吧