首页/ 题库 / [问答题]已知向量组α1=(t,2,1),α2=(的答案

已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试求出t为何值时向量α1,α2,α3线性相关或线性无关.

问答题
2022-01-09 23:50
查看答案

正确答案

123,==(t-3)(t+2).
可知,当t≠3且t≠-2时,α123线性无关,
当t=3或-2时,α123线性相关.

试题解析

相关题目
已知向量2+αβ=(1,-2,-2,-1)T,3+2αβ=(1,-4.-3,0)T,则α+β=( )
设向量组α1,α2,α3,α4,其中α1,α2,α3线性无关,则向量组中()。
6.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )
单选题) 设 n维列向量 α= ( 1 2 ,0,⋯,0, 1 2 ) T ,矩阵 A=I−α α T , B=I+2α α T ,则 AB=
已知向量组α1=(1,1,0),α2=(0,1,0),α3=(0,0,3),则该向量组的秩是( )
已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,,α4=(6,-2,6)T,则该向量组的一个极大无关组是()。
已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。
设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()
向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )
设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().
设向量组A:α1=(1,-1,0),α2=(2,1,t),α3=(0,1,1)线性相关,则t等于()。
设有向量组α1=(2,1,4,3)T,α1=(-1,1,-6,6)T,α3=(-1,-2,2,-9)T,α4=(1,1,-2,7)T,α5=(2,4,4,9)T,则向量组α1,α2,α3,α4,α5的秩是()。
设n维向量组α1,α2,α3,α4,α5的秩为3,且满足α1+2α3-3α5=0,α2=2α4,则该向量组的极大线性无关组是
设向量组A:α1=(1,0,5,2),α2=(-2,1,-4,1),α3=(-1,1,t,3),α4=(-2,1,-4,1)线性相关,则t必定等于().
设α1,α2,…,αs和β1,β2,…,βt为两个n维向量组,且秩(α1,α2,…,αs)=秩(β1,β2,…,βt)=r,则()。
当a=()时向量组α1=(3,1,2,12),α2=(-1,a,1,1),α3=(1,-1,0,2)线性相关
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试求出t为何值时向量α1,α2,α3线性相关或线性无关.
设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()
设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示。记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
广告位招租WX:84302438

免费的网站请分享给朋友吧