首页/ 题库 / [填空题]向量组α1=(1,0,1,2),α2=(的答案
相关题目
已知向量2+αβ=(1,-2,-2,-1)T,3+2αβ=(1,-4.-3,0)T,则α+β=( )
设向量组α1,α2,α3,α4,其中α1,α2,α3线性无关,则向量组中()。
若α1:α2:α3:β1:β2都是四维列向量,且四阶行列式|α1:α2:α3:β1|=m,|α1:α2;α3:β2|=n,则行列式|α1:α2:α3:β1+β2|等于()
设向量α1=(-1,4),α2=(1,-2),α3=(3,-8),若有常数a,b使aα1-bα2-α3=0,则( )
已知向量组α1=(1,1,0),α2=(0,1,0),α3=(0,0,3),则该向量组的秩是( )
已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。
向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )
设向量组A:α1=(1,-1,0),α2=(2,1,t),α3=(0,1,1)线性相关,则t等于()。
设n维向量组α1,α2,α3,α4,α5的秩为3,且满足α1+2α3-3α5=0,α2=2α4,则该向量组的极大线性无关组是
设向量组A:α1=(1,0,5,2),α2=(-2,1,-4,1),α3=(-1,1,t,3),α4=(-2,1,-4,1)线性相关,则t必定等于().
当a=()时向量组α1=(3,1,2,12),α2=(-1,a,1,1),α3=(1,-1,0,2)线性相关
设有向量组α1=(6,λ+1,7),α2=(λ,2,2),α3=(λ,l,0)线性相关,则(  ).
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试求出t为何值时向量α1,α2,α3线性相关或线性无关.
设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。
设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示。记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αr线性表示,但不能由向量组α1,α2,…,αr-1线性表示.证明:(1)αr不能由向量组α1,α2,…,αr-1线性表示;(2)αr能由α1,α2,…,αr,β线性表示.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数,必有(  ).
已知向量组(α1,α3),(α1,α3,α4),(α2,α3,)都线性无关,而(α1,α2,α3,α4)线性相关,则向量组(α1,α2,α3,α4)的极大无关组是____.
已知向量组α1,α2,…,αn线性无关,讨论向量组α1,α1+α2,α1+α2+α3,…,α1+α2+…+αn的线性相关性.
广告位招租WX:84302438

免费的网站请分享给朋友吧