首页/ 题库 / [问答题]设向量组α1,α2,…,α5的秩为r>0的答案

设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。

问答题
2022-01-10 00:31
查看答案

正确答案

(1)设①:αj1j2,…,αjr是α12,…,αs中任意r个线性无关的向量,由于向量组的秩为r,故向量组中任意多余r个向量的向量组必线性相关,所以
αj1j2,…,αjri(i=1,2,…,s;i≠j1,j2,…,jr)
线性相关,从而①为原向量组的极大线性无关组.
(2)设①:αj1j2,…,αjr是α12,…,αs中的r个向量,且原向量组中每个向量都可由①线性表示,则原向量组与向量组①等价.等价向量组有相同的秩,原向量组的秩为r,所以向量组①的秩为r.又向量组①只含r个向量,故向量组①线性无关,因此①是原向量组的极大线性无关组.

试题解析

相关题目
设向量组α1,α2,α3,α4,其中α1,α2,α3线性无关,则向量组中()。
1.向量组α1,α2,……α5的秩不为s(s大于等于2)的充分必要条件是( )
已知向量组α1=(1,1,0),α2=(0,1,0),α3=(0,0,3),则该向量组的秩是( )
向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( )
设向量组A:α1=(t,1,1),α2=(1,t,1),α3=(1,1,t)的秩为2,则t等于().
设向量组A:α1=(1,-1,0),α2=(2,1,t),α3=(0,1,1)线性相关,则t等于()。
设n维向量组α1,α2,α3,α4,α5的秩为3,且满足α1+2α3-3α5=0,α2=2α4,则该向量组的极大线性无关组是
设向量组α1,α2,α3线性无关,向量组α2,α3,α4线性相关,则
设向量组A:α1=(1,0,5,2),α2=(-2,1,-4,1),α3=(-1,1,t,3),α4=(-2,1,-4,1)线性相关,则t必定等于().
设n维向量组α1,α2,…,αs的秩等于3,则()。
设α1,α2,…,αs和β1,β2,…,βt为两个n维向量组,且秩(α1,α2,…,αs)=秩(β1,β2,…,βt)=r,则()。
设向量组α1,α2,…,αs线性无关,而向量组α1,α2,…,αs,β线性相关,则
设向量组α1,α2,…,αs(s≥2)线性无关,向量组β1,β2,…,βs能线性表示向量组α1,α2,…,αs,则下列结论中不能成立的是
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试求出t为何值时向量α1,α2,α3线性相关或线性无关.
设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。
设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示。记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αr线性表示,但不能由向量组α1,α2,…,αr-1线性表示.证明:(1)αr不能由向量组α1,α2,…,αr-1线性表示;(2)αr能由α1,α2,…,αr,β线性表示.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数,必有(  ).
已知向量组(α1,α3),(α1,α3,α4),(α2,α3,)都线性无关,而(α1,α2,α3,α4)线性相关,则向量组(α1,α2,α3,α4)的极大无关组是____.
广告位招租WX:84302438

免费的网站请分享给朋友吧