首页/ 题库 / [单选题]已知λ=2是三阶矩阵A的一个特征值,α1的答案

已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。

单选题
2022-01-01 06:30
A、(2,2,1)T
B、(-1,2,_2)T
C、(-2,4,-4)T
D、(-2,-4,4)
查看答案

正确答案
C

试题解析

相关题目
设 α 1, α 2, α 3, α 4是 4 维列向量,矩阵 A=( α 1, α 2, α 3, α 4).如果|A|=2,则|-2A|=( )
设λ1,λ2是实对称矩阵A的两个不同的特征值,a1,a2是对应于λ1,λ2的特征向量,若a1,a2正交,则λ1≠λ2( )
设矩阵A=[1 1 1 -1 3 1 1 -1 1]的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )
设矩阵A(-1 2 3 0 1 1 0 2 2),则A的对应于特征值λ=0的特征向量为( )
[1 -1 1]设矩阵 A=[1 3 -1][11 1]的三个特征值分别为 λ 1, λ 2, λ 3,则 λ 1+ λ 2+ λ 3= ( )
设矩阵A=[1-1 1][13 -1][11 1]的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )
设λ1,λ2是矩阵A的2个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是:()
已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。
设n阶矩阵A可逆,α是A的属于特征值λ的特征向量,则下列结论中不正确的是()。
(2009)设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:()
设A是三阶矩阵,α1=(1,0,1)T,α2=(1,1,0)T是A的属于特征值1的特征向量,α3=(0,1,2)T是A的属于特征值-1的特征向量,则:()
设A为三阶方阵,λ1=1,λ2=-2,λ3=-1为其三个特征值,对应特征向量依次为α1,
设有向量组α1=(6,λ+1,7),α2=(λ,2,2),α3=(λ,l,0)线性相关,则(  ).
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充要条件为
设A是n阶矩阵,λ1,λ2是A的特征值,ζ1,ζ2是A的分别对应于λ1,λ2的特征向量,则()。
设λ1,λ2是n阶矩阵A的特征值,α2,α2分别是A的对应于λ1,λ2的特征向量,则
设λ1,λ2是矩阵A的两个不同的特征值,ξ、η是a的分别属于λ1、λ2的特征向量,则以下选项正确的是()。
设A是三阶实对称矩阵,λ1,λ2,λ3是三个非零特征值,且满足a≥λ1≥λ2≥λ3≥b,若kA+E是正定矩阵,则参数k应满足
设A是三阶实对称矩阵,λ1,λ2,λ3是A的三个特征值,且满足a≥λ1≥λ2≥λ3≥b,若A-μE是正定阵,则参数μ应满足__.
设x1、x2是三阶矩阵A的属于特征值λ1的两个线性无关的特征向量,x3是A的属于特征值λ2的特征向量,且λ1≠λ2,则()。
广告位招租WX:84302438

免费的网站请分享给朋友吧