首页/ 题库 / [单选题]若α1:α2:α3:β1:β2都是四维列的答案

若α1:α2:α3:β1:β2都是四维列向量,且四阶行列式|α1:α2:α3:β1+β2|等于()

单选题
2021-09-01 20:38
A、m+n
B、-(m=n)
C、n-m
D、m-n
查看答案

正确答案
A

试题解析

相关题目
设 α 1 , α 2 , α 3 ,β,γ 都是4维列向量,且4阶行列式 | α 1 , α 2 , α 3 ,β |=a , | γ, α 1 , α 2 , α 3 |=b ,则4阶行列式 | α 1 , α 2 , α 3 ,β+γ |=
已知向量2+αβ=(1,-2,-2,-1)T,3+2αβ=(1,-4.-3,0)T,则α+β=( )
6.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )
2.设β可由向量α1=(1,0,0),α2=(0,0,1)线性表示,则下列向量中β只能是( )
若α1:α2:α3:β1:β2都是四维列向量,且四阶行列式|α1:α2:α3:β1+β2|等于()
若α1:α2:α3:β1:β2都是四维列向量,且四阶行列式|α1:α2:α3:β1|=m,|α1:α2;α3:β2|=n,则行列式|α1:α2:α3:β1+β2|等于()
单选题) 设 α 1 , α 2 , α 3 ,β,γ 都是4维列向量,且4阶行列式 | α 1 , α 2 , α 3 ,β |=a , | γ, α 1 , α 2 , α 3 |=b ,则4阶行列式 | α 1 , α 2 , α 3 ,β+γ |=
设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( ) [ 2.5 分 ]
设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。
设α1,α2,…,αs和β1,β2,…,βt为两个n维向量组,且秩(α1,α2,…,αs)=秩(β1,β2,…,βt)=r,则()。
设向量组α1,α2,…,αs线性无关,而向量组α1,α2,…,αs,β线性相关,则
已知n维向量α1,α2,…,αs线性无关,那么可能线性相关的β1,β2,…,βs是
设向量组α1,α2,…,αs(s≥2)线性无关,向量组β1,β2,…,βs能线性表示向量组α1,α2,…,αs,则下列结论中不能成立的是
设矩阵A=[α1,α2,α3,α4]经过初等行变换变为矩阵B=[β1,β2,β3,β4],且α1,α2,α3线性无关,α1,α2,α3,α4线性相关.则
设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示。记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αr线性表示,但不能由向量组α1,α2,…,αr-1线性表示.证明:(1)αr不能由向量组α1,α2,…,αr-1线性表示;(2)αr能由α1,α2,…,αr,β线性表示.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数,必有(  ).
己知4×5矩阵A=(α1,α2,α3,α4,α5),其中α1、α2、α3、α4、α5均为四维列向量,α1、α2、α4线性无关;又设:α3=α1-α4,α5=α1+α2+α4,β=2α1+α2-α3+α4+α5,求线性方程组AX=β的通解.
已知向量组(α1,α3),(α1,α3,α4),(α2,α3,)都线性无关,而(α1,α2,α3,α4)线性相关,则向量组(α1,α2,α3,α4)的极大无关组是____.
广告位招租WX:84302438

免费的网站请分享给朋友吧