首页/ 题库 / [判断题]F[x]中,若f(x)+g(x)=h(x的答案

F[x]中,若f(x)+g(x)=h(x),则任意矩阵A∈F,有f(A)+g(A)=h(A)。

判断题
2022-01-11 19:41
A、正确
B、错误
查看答案

正确答案
正确

试题解析

标签: 高等数学 数学
感兴趣题目
若f(x)
g(x)h(x)且(f(x),g(x))=1则()。
数学运算已知f(x)=x2+ax+3,若f(2+x)=f(2-x),则f(2)=( )。
设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的什么?()
设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
设f(x)满足af(x)+bf(1/x)=c/x,其中a、b、c都是常数且|a|≠|b|。  (1)证明:f(x)=-f(-x);  (2)求f′(x),f″(x),f(n)(x);  (3)若c>0,|a|>|b|,则a、b满足什么条件f(x)才有极大值和极小值?
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<><>
设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]
在F[x]中,(x-3)2=x2-6x+9,若将x换成F[x]中的n级矩阵A则(A-3I)2=A2-6A+9I.
若f(-x)=g(x),则f(x)与g(x)的傅里叶系数a,b,α,β(n=0,1,2,…)之间的关系为().
设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有(  )。

若f(x)与g(x),在x_0处都不可导,则?(x)=f(x)+g(x)、ψ(x)=f(x)-g(x)在x_0处(  )。

设f(x)=g(a+bx)-g(a-bx),其中g(x)在(-∞,+∞)有定义,且在x=a可导,则f^' (0) =(  )。

相关题目
若lim x→xo f(x)=a,lim x→xo f(x)=a,则f(x)在点xo处()
若函数f(x)与g(x)对于区间(a,b)内的每一点都有f(x)=g(x),则在(a,b)内必有()
已知函数f(x)在区间[-a,a]上连续,则a-6f(x)dx=∫^ao∫[f(x)+f(-x)]dx。( )
若函数f(x)在区间[a,b]上单调递减,那么对任意x[a,b],恒有f'(x)>0
若函数f(x)=㏒₃a,则f(x)=a㏑3。()
若f(x)为奇函数且对任意的x有f ( x + 3 ) - f ( x - 1 ) = 0 , f ( 2 ) = ( ) ( 3 . 5 )
设f(x),g(x)是恒大于零的可导函数,且 f(x)g(x)-g(x)f(x)<0则当a
设f()在(-∞,+∞)内有定义, lim f ( x ) = a , g ( x ) - f →(,x≠0;g(x)=0,x=0,则()
若y=f(x)在(∞,+∞)内二阶可导,且f(-x)=f(x)当x>0时,f(x)>0,f(x)<0则<0时,有()
已知f(x)的导数在x=a处连续,若lim(x→a)f(x)/(x-a)=-1,则下列结论成立的是()
若f(x)=|x-a|g(x),其中g(x)为连续函数,且g(a)≠0,f(x)在x=a点()
( x ) 设f(x)在0,a上二阶可导,且xf(x)-f(x)>0则F(x)/x 在(0,a)内是()
设f(x),g(x)∈F[x],若f(x)=0则有什么成立?()
带余除法中设f(x),g(x)∈F[x],g(x)≠0,那么F[x]中使f(x)=g(x)h(x)+r(x)成立的h(x),r(x)有几对?()
F[x]中,若(f(x),g(x))=1,则称f(x)与g(x)互素。
若f(x)=bg(x),b∈F*,则f(x)与g(x)相伴。
F[x]中,若f(x)+g(x)=3,则f(0)+g(0)=()。
F[x]中,若f(x)+g(x)=h(x),则任意矩阵A∈F,有f(A)+g(A)=h(A)。
若f(x)在(a,b)内满足f’(x)<0,f"(x)>0,则曲线y=f(x)在(a,b)内是().
F[x]中,若f(x)+g(x)=1,则f(x+1)+g(x+1)=()。
广告位招租WX:84302438

免费的网站请分享给朋友吧