杆OA=ι,绕定轴O以角速度ω转动,同时通过A端推动滑块B沿轴x运动(图4-49)。设分析运动的时间内杆与滑块并不脱离,则滑块的速度νB的大小用杆的转角φ与角速度ω表示为()。
已知:如图所示平面机构中,曲柄OA=r,以匀角速度ωO转动。套筒A沿BC杆滑动。BC=DE,且BD=CE=l。求图示位置时,杆BD的角速度ω和角加速度α。
曲柄机构在其连杆AB的中点C与CD杆铰接,而CD杆又与DE杆铰接,DE杆可绕E点转动。曲柄OA以角速度w=8rad/s绕O点逆时针向转动。且OA=25cm,DE=100cm。在图示瞬时,O、A、B三点共在一水平线上,B、E两点在同一铅直线上,∠CDE=90°,则此时DE杆角速度的大小和方向为:()
(2008)杠OA=ι,绕定轴O以角速度w转动,同时通过A端推动滑块B沿轴X运动,设分析运动的时间内杆与滑块并不脱离,则滑块的速度vB的大小用杆的转角φ与角速度w表示为:()
杆OA=ι,绕定轴O以角速度ω转动,同时通过A端推动滑块B沿轴x运动(图4-49)。设分析运动的时间内杆与滑块并不脱离,则滑块的速度νB的大小用杆的转角φ与角速度ω表示为()。
在定平面O内,杆OA可绕轴O转动,杆AB在点A与杆OA铰接,即杆AB可绕点A转动。该系统称为双摆,其自由度数为:()
如图4-71所示曲柄连杆机构中,OA=r,AB=2r,OA、AB及滑块B质量均为m,曲柄以ω的角速度绕O轴转动,则此时系统的动能为()。
杆OA=ι,绕定轴O以角速度ω转动,同时通过A端推动滑块B沿轴x运动(见图)。设分析运动的时间内杆与滑块并不脱离,则滑块的速度υB的大小用杆的转角ψ与角速度ω表示为()。
图示杆OA以角速度ψ1绕O轴旋转,轮C相对杆以角速度ω2在杆上滚动。轮半径为R,杆长为2l,此瞬时OB=BA。若以轮心C为动点,动系固结在OA杆上,则C点的牵连速度vE为()。
质量为m,长度为的均质杆铰接于O点,A端固结一质量为m的质点如图示。当OA杆以角速度w绕O轴转动时,系统对轴O的动量矩的大小为()。
均质细直杆AB长为ι,质量为m,以匀角速度ω绕O轴转动,如图4-69所示,则AB杆的动能为()。
图示平面机构,曲柄OA长R,以角速度ω绕O轴转动,并通过杆端滑块A带动摆杆O1B绕O1轴转动。已知OA=OO1,图示位置=300,则此时杆O1B的角速度为()。
如图4-54所示,平面机构在图示位置时,杆AB水平而杆OA铅直,若B点的速度νB≠0,加速度aB=0。则此瞬时杆OA的角速度、角加速度分别为()。
如图4-65所示,忽略质量的细杆OC=ι,其端部固结均质圆盘。杆上点C为圆盘圆心。盘质量为m。半径为r。系统以角速度ω绕轴O转动。系统的动能是()。
均质直角曲杆OAB的单位长度质量为ρ,OA=AB=2l,图示瞬时以角速度ω、角加速度a绕轴O转动,该瞬时此曲杆对O轴的动量矩的大小为:()
如图所示,均质杆OA,重为P,长为l,可在铅直平面内绕水平固定轴O转动。杆在图示铅直位置时静止,欲使杆转到水平位置,则至少要给杆以角速度ω为()。
如图所示,均质杆OA,重为P,长为2l,绕过O端的水平轴在铅直面内转动,转到角时,有角速度ω和角加速度ε,则此时铰链O处约束力T和N为()。
杆OA绕固定轴O转动,长为。某瞬时杆端A点的加速度为,如图所示。则该瞬时OA杆的角速度及角加速度为()。
免费的网站请分享给朋友吧