首页/ 题库 / [单选题]若向量组α、β、γ线性无关,α、β,δ线的答案

若向量组α、β、γ线性无关,α、β,δ线性相关,则(  ).

单选题
2022-01-09 23:37
A、α必可由β、γ、δ线性表示
B、β必可由α、γ、δ线性表示
C、δ可由α、β、γ线性表示
D、δ必不可由α、β、γ线性表示
查看答案

正确答案
C

试题解析

因为α,β,δ线性相关,故α,β,γ,δ线性相关.设存在数k1,k2,k3,k4,使k1α+k2β+k3γ+k4δ=0,则k4≠0,否则α,β,γ线性相关,故δ可由α,β,γ线性表示.

感兴趣题目
设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则|A|的值是()。
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).
设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示。记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αr线性表示,但不能由向量组α1,α2,…,αr-1线性表示.证明:(1)αr不能由向量组α1,α2,…,αr-1线性表示;(2)αr能由α1,α2,…,αr,β线性表示.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数,必有(  ).
设α1,α2,…,αm及β为m+1个n维向量,且β=α1+α2+…+αm(m>1)证明:向量组β-α1,β-α2,…,β-αm线性无关的充分必要条件是α1,α2,…,αm线性无关.
设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示,则(  ).
设向量α1、α2、α3线性无关,向量β1可由αl、α2、α3线性表示,向量β2不能由α1、α2、α3线性表示,则对任意常数k必有(  ).
相关题目
6.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )
若 n维向量 α 1 ,α 2 , ⋯ , α n 线性相关, β为任一 n维向量,则 ( )。
、若向量组a1,a2,...ar线性无关,向量组β,a1,a2,...am线性相关,则β能由a1,a2,...am线性表出()
设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( ) [ 2.5 分 ]
设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则
A
的值是()。
设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。
设α,β,γ,δ是维向量,已知α,β线性无关,γ可以由α,β线性表示,δ不能由α,β线性表示,则以下选项正确的是()。
设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的向量组是()。
设向量组α1,α2,α3线性无关,则线性无关的向量组是()。
已知向量组α,β,γ线性无关,则k≠1是向量组α+kβ,β+kγ,α-γ线性无关的()。
设向量组α1,α2,α3,α4线性相关,则下列向量组中线性无关的是__
设向量组α1,α2,α3线性无关,向量组α2,α3,α4线性相关,则
若向量组α、β、γ线性无关,α、β,δ线性相关,则(  ).
设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是(  )。
已知n维向量的向量组α1,α2,…,αs线性无关,则向量组α"1,α"2,…,α"s可能线性相关的是__.
设向量组α1,α2,…,αs线性无关,而向量组α1,α2,…,αs,β线性相关,则
已知n维向量α1,α2,…,αs线性无关,那么可能线性相关的β1,β2,…,βs是
设向量组α1,α2,…,αs(s≥2)线性无关,向量组β1,β2,…,βs能线性表示向量组α1,α2,…,αs,则下列结论中不能成立的是
设向量组α,β,γ线性无关,而向量组aα-α,bβ-γ,cγ-α线性相关,则__.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是(  ).
广告位招租WX:84302438

免费的网站请分享给朋友吧