首页/ 题库 / [单选题]设向量组α1,α2,α3线性无关,则下列的答案

设向量组α1,α2,α3线性无关,则下列向量组线性相关的是(  ).

单选题
2022-01-09 23:49
A、α<sub>1</sub>-α<sub>2</sub>,α<sub>2</sub>-α<sub>3</sub>,α<sub>3</sub>-α<sub>1</sub>
B、α<sub>1</sub>+α<sub>2</sub>,α<sub>2</sub>+α<sub>3</sub>,α<sub>3</sub>+α<sub>1</sub>
C、α<sub>1</sub>-2α<sub>2</sub>,α<sub>2</sub>-2α<sub>3</sub>,α<sub>3</sub>-2α<sub>1</sub>
D、α<sub>1</sub>+2α<sub>2</sub>,α<sub>2</sub>+2α<sub>3</sub>,α<sub>3</sub>+2α<sub>1</sub>
查看答案

正确答案
A

试题解析

因为(α12)+(α23)+(α31)=0,所以α12,α23,α31线性相关

感兴趣题目
设向量组α1,α2,…,α5的秩为r>0,证明:(1)α1,α2,…,α5中任意r个线性无关的向量都构成它的一个极大线性无关组;(2)若α1,α2,…,α5中每个向量都可由其中某r个向量线性表示,则这r个向量必为α1,α2,…,α5的一个极大线性无关组。
设向量β可以由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示,记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(Ⅰ):α1,α2,…,αm-1线性表示。记向量组(Ⅱ):α1,α2,…,αm-1,β,则(  ).
设向量β可由向量组α1,α2,…,αr线性表示,但不能由向量组α1,α2,…,αr-1线性表示.证明:(1)αr不能由向量组α1,α2,…,αr-1线性表示;(2)αr能由α1,α2,…,αr,β线性表示.
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数,必有(  ).
已知向量组(α1,α3),(α1,α3,α4),(α2,α3,)都线性无关,而(α1,α2,α3,α4)线性相关,则向量组(α1,α2,α3,α4)的极大无关组是____.
已知向量组α1,α2,…,αn线性无关,讨论向量组α1,α1+α2,α1+α2+α3,…,α1+α2+…+αn的线性相关性.
设向量组α1,α2,α3线性无关,则向量组α1+α2,α2+α3,α1+α3线性____.
相关题目
设向量组α1,α2,α3,α4,其中α1,α2,α3线性无关,则向量组中()。
6.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )
设向量组 α1,α2,α3 线性无关,则下列向量组中线性无关的是 ( )。
设向量组α1,α2,α3,α4线性相关,则向量组中( )
设α1,α2,α3,β是n维向量组,已知α1,α2,β线性相关,α2,α3,β线性无关,则下列结论中正确的是()。
设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的向量组是()。
设向量组α1,α2,α3线性无关,则线性无关的向量组是()。
已知向量组α1,α2,α3线性无关,则下列向量组中线性无关的是
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()。
设n维向量组α1,α2,α3,α4,α5的秩为3,且满足α1+2α3-3α5=0,α2=2α4,则该向量组的极大线性无关组是
设向量组α1,α2,α3,α4线性相关,则下列向量组中线性无关的是__
设向量组α1,α2,α3线性无关,向量组α2,α3,α4线性相关,则
设向量组α1、α2、α3线性无关,则下列向量组中线性无关的是(  ).
设向量组α1,α2,α3线性无关,则下列向量组中,线性无关的是(  )。
已知n维向量的向量组α1,α2,…,αs线性无关,则向量组α"1,α"2,…,α"s可能线性相关的是__.
设向量组α1,α2,…,αs线性无关,而向量组α1,α2,…,αs,β线性相关,则
设向量组α1,α2,…,αs(s≥2)线性无关,向量组β1,β2,…,βs能线性表示向量组α1,α2,…,αs,则下列结论中不能成立的是
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是(  ).
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试求出t为何值时向量α1,α2,α3线性相关或线性无关.
设向量组(Ⅰ)α1,α2,α3,α4线性无关,则与向量组(Ⅰ)等价的向量组是
广告位招租WX:84302438

免费的网站请分享给朋友吧