首页/ 题库 / [单选题]设A与B都是 n 阶正交矩阵,正确的叙述的答案
相关题目
设A为n阶对称矩阵,B为n阶反对称矩阵,则下列矩阵中为反对称矩阵的是( )
设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。
1.设A与B是两个相似n阶矩阵,则下列说法错误的是( )
设A,B,都是n阶正交矩阵,则下列矩阵是正交矩阵的为()
设A,B都是n阶矩阵且可逆,则下述运算正确的是 ( )
设A是n阶矩阵,C是n阶正交阵,且B=CTAC,则下述结论( )不成立。
设A与B都是 n 阶正交矩阵,正确的叙述是( )。
设A,B都是n阶可逆 矩阵P使P-1AP=B
设A,B都是n阶方阵,若有n阶可逆矩阵P,使P^-1AP=B,则称矩阵A和B相似,记为A~B。对A进行运算P^-1AP称为对A进行相似变换,可逆矩阵P称为把A 变成B的()
设A是m阶矩阵,B是n阶矩阵,行列式等于()。
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是(  )。
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是(  )。
设A是n阶矩阵,a是n维列向量,若,则线性方程组()。
设A为n阶实对称矩阵,B为n阶可逆矩阵,Q为n阶正交矩阵,则下列矩阵与A有相同特征值的是
设n阶矩阵A有n个两两正交的特征向量,证明A是对称矩阵。
设n阶矩阵A有n个两两正交的特征向量,证明A是对称矩阵.
设A为m×n矩阵,若矩阵C与n阶单位阵等价,且B=AC,则
设A、B分别是m阶、n阶方阵,且.证明:
(1)若A、B都相似于对角矩阵,则C相似于对角矩阵;
(2)若A、B都是正交矩阵,则C为正交矩阵,反之也成立;
(3)若A、B是正定矩阵,则C为正定矩阵.
设A是n阶对称矩阵,B是n阶反对称矩阵,则下列不能用正交变换化为对角矩阵的是
设A是n阶对称矩阵,B是n阶反对称矩阵,则下列矩阵中不一定能通过正交变换化成对角阵的是()。
广告位招租WX:84302438

免费的网站请分享给朋友吧